• Resmi Gönderi

    Bu konuda geometri ve derecesine göre uzay geometrisi konularında (ilk orta ve yüksek) derece olmak üzere ders notları içerikli veya hem eğitici hem öğretici bilgileri paylaşabilir geometrinin zevkli halini sizlerde yaşayabilirsiniz. ;) iyi forumlar dilerim. ;);)



    Geometri


    Geometri, matematiğin uzamsal ilişkiler ile ilgilenen alt dalıdır (Eski adı: Hendese). Yunanca Γεωμετρία "Geo" (yer) ve "metro" (ölçüm) birleşiminden türetilmiş bir isimdir.
    Geometri, arazi ölçümü sözcüklerinden türetilmiştir. Herodot (MÖ 450), geometrinin başlangıç yerinin Mısır olduğunu kabul eder. Ona göre geometri kavramı Mısır kö­kenlidir. Sözcüğün kullanımı da Eflatun,Aristo ve Thales’e kadar gider. Yalnız Öklid geometri sözcüğü yerine Elements sözcüğünü yeğlemiştir. Elements sözcüğünün Yunanca karşılığı stoicheia sözcüğüdür.
    Bir kümenin üzerine konan ve kümenin ögelerini birbirleriyle ilişkilendiren bir uygun yapı, geometri yapılmasını olanaklı kılar. Bir düzlemin üzerine doğal olarak konacak ve sezgisel uzaklık duygusunu gözetecek "lise geometrisi"nin adı Öklid geometrisidir. Bu geometrinin tarihsel olarak ilginç ve önemli bir özelliği paralellik aksiyomudur. Bu aksiyomu sağlamayan ama geri kalan tüm aksiyomları sağlayan geometrilere Öklid dışı geometriler denir. Bunlara örnek olarak Hiperbolik geometri ya da küresel geometri verilebilir. Ayrıca ölçeksiz bir cetvel, üçgen ve pergelden başka bir şey kullanmadan çalışılan ölçü dışı geometri de vardır.
    Günümüzde kullanılan doğru, yay, ışın, açı ortay, kenarortay gibi birçok temel geometri teriminin Türkçesi Mustafa Kemal Atatürk'ün Geometri adlı eserinde yazılan eserde önerdiği terimlerden yararlanılarak kullanılmaya başlanmıştır.

    100px-Triangle.Isosceles.svg.png
    İkizkenar üçgen
    İlk geometrilerin tümü, kendi doğası nedeniyle sezgiseldir. Bunlar daha çok ilk insanların çevresinde görünen doğal şekillerdir. Bu geometriler daha çok görsel tür­dedir. İkinci olarak şekillerin ölçülmesi aşaması gelir. Dörtgenlerin ve üçgenlerin ölçül­mesi ilk kez Mısır’da Ahmes’in (MÖ 1550) papirüsünde görülür.
    Bu papirüs MÖ 1580 tarihinden önce yazılmıştır, b tabanlı ve h yükseklikli ikiz kenar üçgenin alanının bh/2 olduğu verilmiştir.
    {\displaystyle {\frac {h.b}{2}}=A(ABC)}2f52a4c0c42e7732d7d36a3feae75d50cef7c7b1
    Yine aynı papirüste d çaplı bir dairenin alanının (d-d/9)2yazımına eş değer olduğu yazılmıştır. Bu yazımlara göre pi sayısı yaklaşık olarak 3,1605 dolay­larındadır. Bu formül geometrik şekilden yaklaşık olarak elde edilmiştir.
    {\displaystyle \ A=\pi r^{2}}332023b15bc6025f97d4d3196067a8405d87f4a9
    Bu formülün tabletlerde de olduğu söylenmektedir. Çin’in yerli geometrisi de gelişkin örnekler içerir. MÖ 1100 yıllarında yazıldığı sanılan Çinlilerin ünlü Nine Sections (Do­kuz Bölüm) kitabında dik açılı üçgen ve ispatsız olarak Pisagor teoremi vardır. Daha sonraki Çin geometrilerinde ölçümleri içeren çok zeki buluşlar vardır. Yine geometrik görünümle Pisagor teoreminin ispatı yapılmıştır. Bu geometrik şekille verilen kitabın MÖ 2000 yıllarında yazıldığı sanılıyor.
    Hintlerin yerli geometrilerinde de matematiksel bir ispat yoktur. Daha çok görsel ve deneysel ölçülere dayanan kuralları vardır. Bunlar da o kadar ileri bir geometri oluş­turmaz. Bin yıllık bir süre boyunca kullanılan Yunan geometrisi ise daha çok görseldir. Eski Roma geometrisi daha çok kullanım alanlarına yöneliktir.
    Arazi ölçümleri, şehir yerleşimleri, su kanalları ve savaş sanatında geometriyi Romalılar iyi kullanmışlardır. Fakat bunlar görsel geometriyi fazla kullanmamışlardır. Zaten görsel geometrinin kökeni Yunanistan’da başlamıştır. Bu çalışmalar ilk kez Thales'in (MÖ 600) yapıtlarında görülür. Thales bu teoremleri Mezopotamya’da ve Mısır’da kullandıklarını görür. Altı teoremle önderlik eder ve bu teoremlerin ispatını yapar. Matematikte ispat yapma Thales’le başlamıştır. Thales’in bu ispatları zamanla kaybol­muş ama ondan sonra bunları öğrenenler gelecek kuşaklara aktarmıştır. Bin yıl süren bu görsel Yunan geometrisi zamanla gerilemiş ve yeni bir çalışma getirilmemiştir.
    Batı Avrupa’nın uyanmasından önceki yüzyıla kadar Yunan kültürünü ve geomet­risini tam olarak Müslümanlar anlamıştır. Yunan klasiklerini, geometrilerini, fen bilimlerini ve felsefelerini Arapça’ya çevirmişlerdir. Fakat ne Öklid’in ne de Apollonius’un çalış­malarına gözle görünür bir katkı yapmışlardır. Okullaşma olma­dığı için gelecek gençlere bu çeviriler öğretilmemiş, bu kitaplar sadece neredeyse bir süs olarak sarayda kalmıştır. Yaptıkları hizmet, kaybolmaya yüz tutmuş Yunan klasiklerini, matematiksel üretimini ve düşüncelerini Arapça çevirileriyle Avrupa’ya iletmişlerdir.
    230px-Woman_teaching_geometry.jpg
    Kadın Geometri öğretiyor. Orta Çağ'ın başlangıcında Öklid'in Unsurlar'ının (Elements) çevirisinin canlandırılması (yaklaşık 1310)
    Avrupa’daki karanlık çağda biri Boethius’un (510) diğeri de Öklid’in (MÖ 300) Sements isimli kitabı vardı. Bunlardan sonra Gerbert’in (1000) ve Fibonacci’nin (1202) geometrileri sayılabilir ama bu geometriler İskenderiye geometrilerinden ileri bir dü­zeyde değildi. Avrupa’nın geometrisine büyük katkı 1242 yılında ilk baskısı yapılan Öklid geometrisi oldu. Zaten çok iyi düzenlenmiş ve yazılmış olan bu geometriler Avrupa’ya hızla yayıldı ve her tarafında bilinir oldu. Öklid’in geometrisinin ardından yavaş yavaş geometri ürünleri ortaya çıkmaya başladı. On yedinci yüzyılın başlarında analitik geo­metri ve 1639 yılında da Desargues’ın (1593-1662) izdüşüm geometrisi basıldı. Ana­litik geometri Descartes (1596-1650) ve Fermat (1601-1665) tarafından aynı dönem­lerde yapıldı. Fermat yaptığı çalışmaları yayınlamadığı için analitik geometrinin bulun­ması onuru Descartes’e verildi. Analitik geometri kısaca geometri ile cebir arasındaki ilişkidir diyebiliriz. Geometri ile cebir arasındaki ilişkiyi ilk kez Descartes çıkar­dığı için büyük bir matematikçi olmuştur. Desargues’ın izdüşüm geometrisi matematikçilerin dikkatini çekmiş ve on dokuzuncu yüzyılda çıkacak olan geometricilere coşku ve esin kaynağı olmuştur.
    Analitik geometri bulunduktan sonra Apollonius’un (MÖ 262-190) konikleri sen­tetik ve analitik olarak yeniden incelenmiştir. Sadece konikler değil, eski Yunan geo­metrisi yeniden analitik olarak gözden geçirilmiştir. Sentetik geometrinin tüm problemleri bir kez de analitik olarak kanıtlanmıştır.

  • Hepimize lise yıllarında '' dik üçgenin hipotenüsünün ortası çevrel çemberinin merkezidir'' kuralı ezberletildi. Kabul ediyorum ben de ezberlemiştim. Ancak üniversite yıllarında biraz basit düşününce bu kuralı nasıl doğru olduğunu buldum.
    Şimdi Bir çember çizin
    Birbirine dik iki kiriş çizin.
    Çapı gören çevre açı 90 derecedir(onun da ispatını bir ara atarım)
    Dolayısıyla hipotenüz çap olur. Merkez de çapın ortası yani hipotenüsün ortası olur.
    Buradan şu meşhur muhteşem üçlü kuralını da çıkarabilirsiniz. Açılara a b falan diyerek öklidi de buradan çıkarabilirsiniz.
    İyi forumlarç

  • Whisper 1 Ekim 2020 21:20

    Konunun başlığı değiştirildi. Eksi Başlık: “GEOMETRİ” Yeni Başlık: “Geometri”.